使用期限永久
许可形式单机和网络版
原产地美国
介质下载
适用平台windows,mac
科学软件网专注提供科研软件。截止目前,共代理千余款,软件涵盖各个学科。除了软件,科学软件网还提供课程,包含34款软件,66门课程。热门软件有:spsspro,stata,gams,sas,spss,matlab,mathematica,lingo,hydrus,gms,pscad,mplus,eviews,nvivo,gtap,sequncher,simca等等。
Improved algorithms for ML estimation of large multivariate three-level models with missing data
Monte Carlo output for CFI/TLI; new summary for RMSEA
图中的箭头表示变量之间的回归关系。回归关系是允许的,但在图中没有具体说明,包括观测到的结果变量之间的回归,连续潜变量之间的回归以及类别潜变量的回归。对于连续结果变量,使用的是线性回归模型。对于结果变量,在删截点有或没有通货膨胀,审查(tobit)都使用回归模型。对于二进制和有序分类结果,使用概率或logistic回归模型。对于无序的分类结果,使用多项式logistic回归模型。对于计数结果,不管通货膨胀率是否为零,都使用Poisson和负二项回归模型。
This means that the modeling includes IRT modeling with covariates. Translations to common IRT parameterizations are provided in the output. These models are available for TYPE=GENERAL, TYPE=COMPLEX, TYPE=MIXTURE, and TYPE=TWOLEVEL for the ML, MLF, and MLR estimators (Asparouhov & Muthén, 2015).
Mplus的建模框架借鉴了潜变量的统一主题。而且一般的建模框架来自连续和分类潜变量的使用。连续潜变量用于表示与未观测到的构造相对应的因素,随机效应与发展中的个体差异相对应,随机效应与分层数据中各组间系数变化相对应,弱点对应于生存时间的异质性,责任与疾病遗传易感性相对应,潜在响应变量值与缺失数据相对应。分类潜变量对应于均质个体群,潜在的轨迹分类对应于未观测种群的发展类型,混合组件对应于未观测种群的有限混合,潜在响应变量类别对应于缺失数据。
Mplus Base Program and Mixture Add-On
包含了所有Mplus Base Program的功能。此外,估计回归混合模型;路径分析混合模型;潜在类别分析;具有多分类潜变量的潜类分析;对数线性模型;有限混合模型;编译器的平均因果关系(CACE)模型;潜在类增长分析;潜在转移分析;隐马尔可夫模型以及离散和连续时间生存混合分析。观测到的因变量可以是连续的、删失的、二元的、有序的(序数)、无序的分类(名词)、计数或这些变量类型的组合。其他功能包括单组或多组分析;缺失数据估计;复杂的调查数据分析,包括分层、聚类和不平等的选择概率(抽样权重);用极大似然法分析潜在变量相互作用和非线性因素;随机斜率;个体变化的观测次数;非线性参数约束;所有结果类型的极大似然估计。引导的标准误差和置信区间;贝叶斯分析与多重归责原则;蒙特卡罗模拟功能以及后处理图形模型。
科学软件网不定期举办各类公益培训和讲座,让您有更多机会免费学习和熟悉软件。
http://www.kxrjsoft.com.cn